1. Для начала каждого из предложений А-В подберите его окончание 1-6 так, чтобы получилось верное утверждение.

НАЧАЛО ПРЕДЛОЖЕНИЯ

- А) Окружность с центром в точке (-8; -2) и радиусом 4 задается уравнением:
- Б) Уравнением прямой, проходящей через точку
- (-8;2) и параллельной прямой $y = \frac{1}{4}x$, имеет вид:
- В) График обратной пропорциональности, проходящий через точку $\left(\frac{1}{2}; -\frac{1}{2}\right)$, задается уравнением:

ОКОНЧАНИЕ ПРЕДЛОЖЕНИЯ

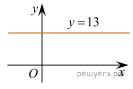
1)
$$xy = 2$$

2)
$$(x-8)^2 + (y-2)^2 = 4$$

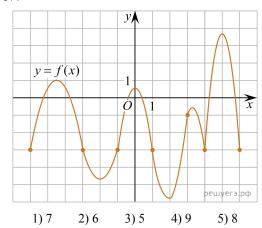
3)
$$-\frac{1}{4}x + y = 4$$

4)
$$(x+8)^2 + (y+2)^2 = 16$$

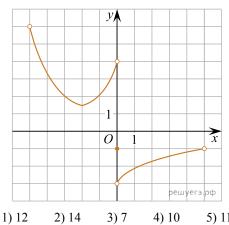
5) $4xy+1=0$


5)
$$4xy + 1 = 0$$

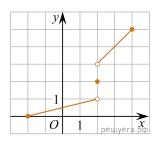
6)
$$\frac{1}{4}x + y = 2$$

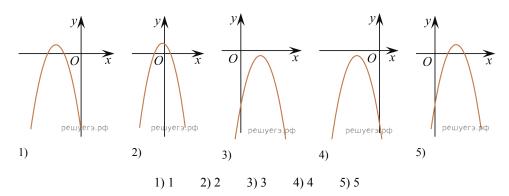

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: А1Б1В4.

2. Укажите номер точки, которая принадлежит графику функции $y = 5^x$.

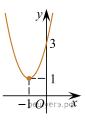

3. Среди точек $B(13;0), T(-7;13), C(-\sqrt{13};\sqrt{13}), O(0;0), L(0;-13)$ выберите ту, которая принадлежит графику функции, изображённому на рисунке:

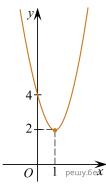
- 1) B 2) T 3) C 4) O 5) L
- **4.** Окружность задана уравнением $(x-3)^2 + (y+4)^2 = 14$. Укажите номер верного утверждения.
 - 2) Центром окружности является точка O(-3;4); Точка A(-4; 3) лежит на окружности;
 - 3) Диаметр окружности равен 14; 4) Прямая y = 2x - 10 проходит через центр окружности; 5) Радиус окружности равен 7.
- 5. На рисунке изображен график функции y = f(x), которая определена на промежутке [-6; 6]. Найдите количество целых значений x, при которых выполняется неравенство $f(x) \le -3$. (Черными точками отмечены узлы сетки, через которые проходит график, функции y = f(x).


6. Найдите сумму всех целых значений функции y = f(x), заданной графиком на промежутке (-5; 5) (см. рис.).

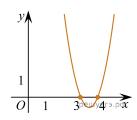

- 7. График уравнения 1,8x 0,6y = a проходит через точку A(-2; 9). Найдите число a. 1) -9 2)9 3) 7 4) - 18
- **8.** Прямая задана уравнением 5x y = 10. Укажите номер верного утверждения.
- 1) Прямая проходит через начало координат;
- 2) прямая параллельна оси абсцисс;
- 3) прямая параллельна оси ординат;
- 4) прямая пересекает ось ординат в точке A(0; -10);
- 5) прямая пересекает ось абсцисс в точке B(-2; 0).
 - 1) 1 2) 2 3)3 4) 4 5)5
- 9. Укажите номер верного утверждения, если известно, что функция y = f(x) возрастает на множестве действительных чисел и f(-3) = 0.
 - 1) f(-5) < f(-1) 2) f(3) = 0 3) f(-7) > f(2)
- 4) f(-6) > 0

5) - 2,4


- 5) f(6) < 0
- **10.** Укажите область значений функции y = f(x), заданной графиком на промежутке [-2; 4] (см. рис.).


- 1) [0; 5]
- 2) $[0; 1] \cup [3; 5]$ 3) $[0; 1) \cup \{2\} \cup (3; 5]$ 4) $[0; 1] \cup \{2\} \cup [3; 5]$
- $5)[0;1) \cup (3;5]$
- **11.** Укажите номер рисунка, на котором представлен эскиз графика функции $y = 1 (x + 3)^2$.

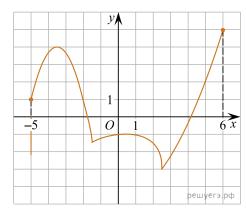
12. Среди предложенный уравнений укажите номер уравнения, графиком которого является парабола, изображенная на рисунке:



- 1) $y = x^2 + 4x + 3$ 2) $y = x^2 4x 3$ 3) $y = 2x^2 + 4x + 3$ 4) $y = 2x^2 + 4x 3$ 5) $y = 2x^2 4x + 3$
- 13. Среди предложенный уравнений укажите номер уравнения, графиком которого является парабола, изображенная на рисунке:

- 1) $y = 2x^2 4x + 4$ 2) $y = x^2 4x 4$ 3) $y = 2x^2 + 4x + 4$ 4) $y = 2x^2 4x 4$ 5) $y = x^2 + 4x + 4$
- **14.** Окружность задана уравнением $x^2 + y^2 + 4y + 4 = a + 4$ и проходит через вершину параболы $y = 2 (3 x)^2$. Найдите радиус этой окружности.
 - 1) 5 2) 25 3) $\sqrt{21}$ 4) 21 5) $\sqrt{29}$

- **15.** Используя схематичное изображение параболы $y = 2x^2 + bx + c$, найдите сумму b + c.


- 1) 12 2) 5
- 3) 20
- 4) 10
- **16.** Дана функция $y = \left(\frac{1}{2}\right)^x$. График функции y = g(x) получен из графика функции $y = \left(\frac{1}{2}\right)^x$ сдвигом его вдоль оси абсцисс на 1 единицу влево и вдоль оси ординат на 3 единицы вниз. Значение g(-4) равно:
 - 1) 11
- 2) 5
- 4) 29 3)3
- 5) 35
- 17. Укажите номер функции y = f(x), график которой получен из графика функции $y = \frac{1}{x}$ сдвигом его вдоль оси абсцисс на 2 единицы вправо и вдоль оси ординат на 1 единицу вниз.

 - 1) $f(x) = \frac{1}{x+1} 2$ 2) $f(x) = \frac{1}{x+2} 1$ 3) $f(x) = \frac{1}{x+2} + 1$ 4) $f(x) = \frac{1}{x-2} + 1$
- $5) \ f(x) = \frac{1}{x 2} 1$
- **18.** Какая из прямых пересекает график функции $y = \frac{1}{4}x^2 3x + 11$ в двух точках?

 - 1) y = -3 2) y = -1.5 3) y = 0 4) y = 4.3 5) y = 2

- **19.** Тангенс угла наклона к оси абсцисс касательной, проведенной к графику функции $f(x) = 3x^2 + 41x + 8$ в точке с абсциссой x_0 , равен -7. Найдите значение x_0 .
 - 1) 16
- 2) 6
- 3) 8
- 4) 8
- 5) 16

20. Функции заданы формулами:

1)
$$y = |x| - 1$$
;

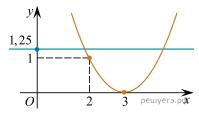
2)
$$y = -0.4x - 1;$$
 3) $y = \frac{1}{x};$

3)
$$y = \frac{1}{r}$$
;

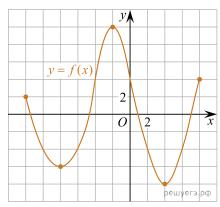
4)
$$y = \log_2 x$$
;

5)
$$y = 2^x$$
.

Выберите функцию, график которой имеет с графиком функции y = f(x) (см. рис.), заданной на промежутке [–5; 6], наибольшее количество точек пересечения.


1)
$$y = |x| - 1$$

2)
$$y = -0.4x -$$


1)
$$y = |x| - 1$$
 2) $y = -0.4x - 1$ 3) $y = \frac{1}{x}$ 4) $y = \log_2 x$ 5) $y = 2^x$

5)
$$y = 2^{x}$$

21. Найдите $4x_1 \cdot x_2$, где x_1, x_2 — абсциссы точек пересечения параболы и горизонтальной прямой (см. рис.).

22. На рисунке изображен график функции y = f(x), заданной на промежутке [-12; 8]. Найдите произведение значений аргумента, при которых f'(x) = 0. (Черными точками отмечены узлы сетки, через которые проходит график функции y = f(x).)

23. Дана функция $y = \left(\frac{1}{2}\right)^x$. График функции y = g(x) получен из графика функции $y = \left(\frac{1}{2}\right)^x$ сдвигом его вдоль оси абсцисс на 1 единицу вправо и вдоль оси ординат на 4 единицы вниз. Найдите значение выражения $g(-4) \cdot g(1)$.